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The motion of a system (a rigid body, symmetrical ahout three mutually perpendicular plants, plus a point mass situated inside 
the body) in an unbounded volume of a perfect fluid. which executes vortex-free motion and is at rest at infinity, is considered. 
The motion of the body occurs due to diaplaccmcnt of the point mass with respect to the body. Two cases arc investigated: 
(a) there are no external forces, and (h) the syatcm moves in a uniform gravity field. An analytical investigation of the dynamic 
equations under conditions when the point performs a specified plane periodic motion inside the body showed that in case (a) 
the system can be displaced as far as desired from the initial position. In case (b) it is proved that, due to the permanent addition 
of energy of the corresponding relative motion of the point, the body may float upwards. On the other hand, if the velocity of 
relative motion of the point is limited, the body will sink. The results of numerical calculations, when the point mass performs 
random walks along the sides of a plane square grid rigidly connected with the body, are prcscntcd. 0 2003 Elscvier Ltd. All 
rights reserved. 

The classical problem of the motion of a rigid body in an infinite volume of a perfect fluid, which performs 
vortex-free motion and is at rest at infinity (see, for example, [l, 2]), allows of different generalizations, 
including to the case of a body of variable geometry. The free motion (when there are no external forces) 
of a variable body, under conditions when a change in the geometry of the masses of the body and its 
shape occurs due to the action of internal forces and is described by specified functions of the time 
with respect to a certain moving system of coordinates, was considered earlier in [3, 41. In this 
formulation, the problem of the motion of variable body reduces to investigating the motion of such a 
system of coordinates. The following new effect was discovered [3,4]: the law of variation of the geometry 
of the body can be chosen in such a way as to ensure displacement of the body to any point (as far away 
as desired) of the surrounding volume of fluid. Complete controllability of this system also turned out 
to be possible while preserving the shape of the external surface of the body (i.e. solely due to a change 
in the internal geometry of the masses). A unique condition is the fact that the connected masses of 
the body (which, we recall, depend only on the shape of its surface) should not all be equal to one 
another. Note that the results obtained previously on the possibility of unlimited motion of a variable 
body (see, for example, [5,6]) are based on the use of mechanisms for controlling the geometry of the 
body for which the shape of its surface and its volume are changed. Below we investigate in more detail 
the mechanism of displacement of a body with a point mass inside it, and we also investigate the motion 
of this variable body in a uniform force held. 

1. THE EQUATIONS OF MOTION 

It is well known that the problem of the motion of a rigid body in an unbounded volume of a perfect 
fluid can be considered in a generalized formulation, when a change in the geometry of the body is 
allowed. Here we will investigate the case when the changeable body consists of a body (correspondingly 
a rigid body) and a point mass m, which is displaced inside it. We will assume that the motion of the 
whole system begins from a state of rest. The motion of the point with respect to the body is assumed 
to be specified in the sense that, in a system of coordinates rigidly connected with the body, the 
coordinates of the point are known functions of time. In this case the problem reduces to investigating 
the combined motion of the body (the container) in the fluid and of the point when there are time- 
dependent holonomic constraints. In accordance with the constraint elimination principle (see, for 
example, [2]), the motion of the composite body in a perfect fluid (the body plus fluid plus point system) 
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can be interpreted as a classical problem of the motion of a rigid body in a fluid (a body plus fluid system) 
when acted upon by certain specified internal forces, generally time-dependent. These forces are 
obviously none other than reaction forces which arise as a result of the superposition of constraints 
which ensure the specified relative motion of the point in the body. 

The problem can be investigated by different methods. Below we obtain a solution based on the use 
of the fundamental theorems of dynamics. We first introduce necessary notation, we obtain expressions 
for the fundamental dynamic characteristics of the mechanical system being investigated, and we derive 
the equations of motion. We will confine ourselves to the case when the body is symmetrical (both in 
shape and in mass distribution) about three mutually perpendicular planes, and performs plane motion. 
In this plane we fix a system of coordinates 0~ (see Fig. I), relative to which the fluid is assumed to 
be at rest at infinity. We connect a moving system of coordinates O,E,n with the centre of symmetry of 
the body O,, this system of coordinates being oriented along the principle axes of inertia of the body 
and therefore occupying an unchanged position in it (we recall that the body itself is assumed to be 
absolutely rigid). Sometimes, for convenience, we will also use an auxiliary system of coordinates O,xlyl, 
the axes of which remain parallel to the fixed axes Ox and Qy during motion. 

As is well known [l], in the case of vortex-free motion of the fluid, the state of the body plus fluid 
system is uniquely defined by the position and velocity of the body. In the case of plane motion of the 
body (with corresponding plane motion of the point tn) it is convenient to take as the generalized 
coordinates of the body plus fluid system the quantities x and y - the coordinates of the point 0, and 
the angle cp between the 0,x, and O,k axes. We will characterize the position of the point m by the 
vector r + p, where r is the radius vector of the point 0, and p is the radius vector of the point m in 
the moving system of coordinates. Suppose x, and ~1~ are projections of the vector p onto the x and y 
axes. We will assume the components 5: n of the radius vector p in the moving system of coordinates 
O,~TJ to be specified functions of time. The relation between the quantitiesx,,y, and c(t), n(t) is defined 
by the following formulae of rotation by the angle cp 

x, = c(t)cosq-n(t)sincp, J, = c(t)sincp+rJ(t)coscp (1.1) 

Note that relations ( 1.1) describe, in explicit form, two holonomic constraints imposed on the body 
plus fluid plus point system. Hence, the mechanical system considered is defined by five generalized 
coordinates X, y, cp, xl and yl when there are two holonomic constraints (1. I) and, consequently, has 
three degrees of freedom. 

As usual, we will denote the differentiation of functions with respect to time by a dot. Then, the 
projections of the velocity vector of the point 0, onto the fixed axes are equal toi and y. If we denote 
the components of the same vector referred to the moving 5 and TJ axes by u and u, then, like formulae 
(1.1) we will have 
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(1.2) 

and also the inverse relations 

u = icoscp+jsincp, v = -isincp+jlcoscp 

As is well known [l], in the (plane) case considered, the kinetic energy of the body plus fluid system 
can be represented in the form 

T(O) = 1 
2’ 

a*u2 + a*v2 + bo2) 

Here the projections of the momentum PC”) onto the moving axes are alu and a2u, while the angular 
momentum Kg’ about the point 0, is equal to bo, where al, a2 and b are the moments of inertia of 
the body with the connected masses (ignoring the point m) and o = @. 

We will write expressions for the projections of the momentum vector P(O) onto the fixed axes 

p(O) 
x = a,ucoscp-a2Vsincp, y = a,usincp+a2vcoscp p(O) 

(1.3) 

The total momentum P of the body plus fluid plus point system is equal to P(O) + P@) = P(O) + rnV@“). 
Since the velocity vector of the point m has the components 

the total momentum P = (P,c, P,,) can be written, in terms of projections onto the moving axes, in the 
form 

P = ((a, + m)u + m(< - oq), (a, + m)v+ rn(fi + o<))kq (1.4) 

We will now calculate the total kinetic moment of the system about the point 0 

K = (K”’ + K’“‘), = (Kg; + [r x P”‘] + m[ (r + p) x v’“‘]), (1.5) 

((.), is the projection of the vector onto the axis orthogonal to thex andy axes). Using the representation 
of the vectors in the 0~ axes used in expression (1.5) we obtain 

K = ~CO + x[Pr’ + m(j + j,)] - y[P.y) + m(.i + iI)] + m[x,(j + j,) - yl(i + i,)] 

Noting that 

m(i+il) = P,-Pr’, m(j+j,) = P,-$? 

and using relation (1.3) we finally obtain 

K = by + (x + xI)P, - (y + y,)P, + a,q - a2v5 (1.6) 

Obviously, the holonomic constraints (1.1) imposed on the system allow of a parallel transfer of the 
body plus fluid plus point system as a solid whole along the moving axes and rotation about the fixed 
Oz axis. By the fundamental theorems of dynamics [2], we have the relations 

dP, dP 
-= -y = 
dt Fx, dt 

F dK - M 
Y’ dr- (1.7) 

Where F, and I$ are the projections of the sum of the external forces onto the fixed Ox and Oy axes 
respectively, while M is the total moment of the external forces about the point 0. Relations (1.7) define, 
in the general case, a system of three second-order ordinary differential equations, which describe the 
plane motion of the body plus fluid plus point system for specified relative motion of the point and for 
specified external forces. 



556 V. V. Kozlov and D. A. Onishchenko 

2. MOTION WHEN THERE ARE NO EXTERNAL FORCES 

It was shown in [3] that when there are no external forces and the motion of the system begins from a 
state of rest, the problem is integrable. This integration is carried out in explicit form below. 

Thus, F, = F; = M = 0 when there are no external forces. Hence, taking into account the fact that 
at the initial instant the system is at rest, we conclude from Eqs (1.7) that P, = Py = 0 (and of course 
PC = P, = 0), and K = 0. Finally, from relations (1.4) and (1.6) we obtain the relations 

(a, +m)u+m(&o) = 0, (a,+m)u+m(ij+~co> = 0 

bo+a,uq-a,ut = 0 

We will introduce the notation 
m - m a, = - 

a, +m’ 
a2 = - 

a2 + m 

Expression u and u from the first two relations (2.1) 

u = ii,(?Jo-0, u = -ii,(QD+lj) 

and substituting these expressions into the third, we obtain 

(2.1) 

(2.2) 

(2.3) 

The right-hand side of relation (2.3) is a specified function of time, and hence the notation q(t) of 
the moving frame of reference is found by straightforward integration 

'f q(t) = cp,+Ijdr 
0 2 

(2.4) 

Now, taking relations (2.2) into account, the right-hand sides of relations (1.2) become known func- 
tions of time and, consequently, the coordinates x and y of the point 0, are found by straightforward 
integration. 

We will represent these relations in a somewhat different form, which is more convenient for numerical 
integration. We will first determine the law of motion of the point 0 in the moving system of coordinates 
O&-t. We will denote the components of the vector r. = -r in the moving axes by b and qo. The theorem 
of the addition of velocities gives 

V, = 0 = V,, + [ox ro] + (V&, (2.5) 

Since, in the moving system of coordinate 0,.$-t 

it follows from equalities (2.5) that 

Hence, taking relations (2.2) into account, we obtain 

making the replacement 

(2.6) 
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we arrive at the system 

21 = 6x*-l& i2 = -W,+KTj; K = &-ii2 = 
da,--a,) 

(a* + m)(a* + m) 
(2.7) 

For convenience we will introduce the following set of complex variables 

Z = z, +izz, R = x+iy, R, = &,+iqo 

and also two complex-valued functions of time, characterizing the relative motion of the point 

P(t) = -5(t) + iql(t), o(t) = ii&(t) + ii&q(t) 

In the new notation relations (2.6) take the form 

Z = o-R, (2.8) 

while system (2.7) can be written as a linear first-order inhomogeneous equation 

i = -iw(t)Z+Ki)(t) (2.9) 

The solution of the equation obtained has the form 

Z(r) = S(r)e-iq”’ (2.10) 

The coefficient s(t) = s,(t) + i.s?(t) is found from the relation 

S(f) = KP(t)eicP(‘) (2.11) 

i.e. 

s(t) = s(o) + jK~(t)f?“%t (2.12) 
0 

Assuming, without loss of generality, that the points 0 and 0, at the initial instant of time coincide 
(i.e. &1(O) = ~(0) = 0) and that ~(0) = (po, we obtain 

S(0) = (ii&(O) + iii,q(0))e’(PO 

From Eqs (2.8) and (2.10) we obtain 

R,(r) = o(t) - S( t$“(‘) (2.13) 

Relation (2.13) together with (2.12) describes the relative motion of the point 0. 
It is now easy to obtain the absolute motion of the point 0. In fact, in the complex planes Oi@l and 

Oxy, rotated by an angle cp with respect to one another, the complex numbers -R. = -(to + QO) and 
R =x + iy respectively specify the same point. Hence, taking relations (2.8) (2.9) and (2.11) into account 

R(r) = -RoeicP(‘) = qt) _ o(t)eW) (2.14) 

Relation (2.14) together with (2.4) describes the motion of the body in the fixed system of coordinates. 
No difficulties arise in carrying out numerical calculations using these relations. Below we will present 
some examples of the trajectories of the body in the fluid in the case of different relative motions of 
the point. 

Following the approach described previously in [3], we will consider the problem of the possibility 
of unlimited motion of the casing of the body when there is periodic relative displacement of the point m. 
Suppose the functions k(t) and rl(t) have period T = 2nlQ. In this case, by relations (2.3), the function 
Cp is also periodic with the same period, and consequently 
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cpw = ht+cp(t) 

where A is the average value over a period of the function f&, defined by, relations (2.3), while 
Q(t) is a certain function of period T. It follows from Eq. (2.11) that S = W(t)e’*‘, where the function 
W is periodic with the same period. Using the expansion of W in a Fourier series, we arrive at the 
relation 

When this equation is integrated in the case when there is resonance nQ + A = 0 in the representation 
of the function S, a non-zero secular term Wnf generally appears, which in view of the boundedness of 
the term o(t)&‘(‘) in expression (2.14) causes an unlimited departure of the body from the initial (fixed) 
position. Note that the simplest version of resonance is the case A = 0. 

If there are no resonances (i.e. nQ + A f 0 for all n), the function S and, correspondingly, R turn 
out to be unbounded, and the body will therefore perform motion in a bounded neighbourhood of the 
origin of coordinates. 

We will supplement the above analysis with characteristic representations of the trajectories of the 
body, constructed from the results of numerical integration of the governing system of differential 
equations. We will hrst illustrate the resonance case. It was shown in [4], that the self-intersecting contour 
in Fig. 2(a) is a resonance contour: when the point m moves along it with constant velocity the condition 
A = 0 is satisfied, and the integral over a period on the right-hand side of relation (2.12) is non-zero. 
In Fig. 3(a) we show the corresponding trajectory of the “motion” of the point 0 in the moving axes 
O&n (in Fig. 3, for clarity, we have plotted values of -no). The displacement of the body over a period 
is equal to 6 = WoT # 0 and the body as a whole is displaced along a straight line, moving with constant 
velocity from the initial position. The direction of this line depends on the parameters of the body. 

The trajectory shown in Fig. 3(b) corresponds to a resonance contour of a continuous figure-of-eight 
type, shown in Fig. 2(b), along which the point m moves with constant velocity. The pattern of motion 
of the system does not change qualitatively. This case is interesting in the fact that, unlike the contour 
with comers, here the functions c(t), rl(t) are continuous. In Fig. 4 we show, for comparison, graphs of 
the variation with time of the generalized coordinates of the body 50, -no, cp when the point moves 
along a contour of the figure-of-eight type in the resonant case (Fig. 4a) and in the non-resonant case 
(Fig. 4b). The latter version is obtained by a direct reduction in the radius of one of the circles of the 
“figure-of-eight”. On can clearly see the difference in the nature of the variation with time of the function 
g(t): in the resonant case the body performs oscillatory motion while in the non-resonant case it performs 
rotational motion. 

The trajectory of motion of the body in the non-resonant case is shown in Fig. 5. Note that, as one 
approaches the resonance condition - in this case as the radii of the two circles of the “figure-of-eight” 
approach another - the radius of curvature of the “frame” of the trajectory, along which the centre of 
the body 0 moves with oscillations of relatively small amplitude, increases without limit. As a 
consequence of this, in the corresponding finite time intervals, the trajectories of motion of the body 
in the resonant case (Fig. 3b) and in the non-resonant case (Fig. 5) become practically indistinguishable 
from one another. 

3. ACCELERATED MOTIONS OF THE BODY 

We draw attention to one important feature of the system being investigated in the case considered 
above, when no external forces act on the body and when the motion begins from a state of rest. It 
turns out that the trajectory of motion of the body is uniquely defined solely by the form of the trajectory 
of relative motion of the point m and is independent of the velocity of motion along this path. 

The corresponding assertion can be formulated more accurately as follows. Suppose we know 
the motion of the system q(t), R(t), when the relative trajectory of the point m is specified by the 
functions e(t), n(t), defined for 0 c t G t*. Then, if the point traverses the same trajectory, but 
with a different velocity (i.e. the motion of the point is described by the functions &z(t)), r@(t)), where 
the function z + h(t) is monotonic), the motion of the system is described by the functions 
cpM0)~ R(W))* 

We note further the following qualitative feature of the motion of the body in the resonant case. We 
define the “effective” velocity of the body in the case of the motion of a point m with constant velocity 
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along a closed contour y as u,(t) = R(t)/f. If when A = 0 the displacement of the body over a period T 
is equal to 

it is then obvious that as t + 00 

6, = R(T) -R(O)#O 

~0 O(t) 
v,(t) = ‘?; +7 

Hence, the body will be displaced on average with a velocity 60/T. 
As follows directly from the above, when the point m moves over the same contour y with a high 

velocity, the body obtains the same displacement &, but this occurs after a shorter time. Hence, it 
immediately follows that by forcing the point to traverse the same “resonance” contour in an ever- 
decreasing time interval one can achieve accelerated motion of the body as a whole. 

For example, consider the following law of motion of the point. Suppose the point moves with constant 
velocity over a closed resonance contour and performs one circuit in a time T. The point then performs 
two circuits at twice the velocity etc. In the nth cycle the point perform 12 circuits with a velocity exceeding 
the initial velocity by a factor of IZ. 

Let us calculate the effective acceleration of the body. In a time t,, = nT the displacement of the 
body (along a straight line) is equal to 

6, = (n + l)n6,/2 

The effective velocity of the body in the nth cycle is 

v, = n&,/T = (6,l?)t, 

Assuming, on this basis, that the motion of the body is uniformly accelerated with an effective accelera- 
tion a, = &JT*, we obtain the corresponding displacement after a time tn: 6 = a,$/2 = n*60/2, which, 
for sufficiently large n, is identical with the quantity S,, thereby confirming the assumption of the 
accelerated nature of the motion of the body in the case considered. 

We emphasise that the actual “tractive” force is produced as a result of the unlimited increase in the 
energy of relative motion of the point m. 

4. MOTION IN A UNIFORM FORCE FIELD 

We will complicate the problem and assume that the body plus fluid point system is in a gravitational 
field. Suppose F is a force, constant in value and direction, acting on the system considered; we will 
assume that this force is in the opposite direction of they axis. 

As follows from the results of Section 3, as a result of the proper motion of the point m inside the 
body under the action of internal forces, the body may constantly rise upwards. In this case the 
energy of relative motion of the point m increases with time. On the other hand, it turns out that if 
the relative velocity of the point m is limited (i.e. the functions g(t) and q(t) are bounded), then 
y(t) + 00 as t + 00. Hence, the body will finally fall downwards for as small a value of the force F as 
desired. 

We will prove this assertion. The relations P1 = 0 andbz = -F follow from Eqs (1.7). Slightly extending 
the problem and assuming that, in the initial state (before the motion of the point begins), the body 
had a certain momentum (cr, c2&,, we obtain that P1 = cl and P2 = -Ft + c2, where cl and c2 are constants. 
By shifting the time origin one can always arrange that c2 = 0. We will put cl = c. 

Considering the momentum in projections onto the moving axes, and taking expression (1.4) into 
account, we obtain 

(a, +m)u+m(e-on) = ccoscp-Ftsincp (4.1) 

(a2 + m)v+ m(?j + 05) = -csincp- Ftcoscp (4.2) 

The motion of the body along the vertical is of interest, so we will use the second of relations (1.2). 
Expressing u and u from Eqs (4.1) and (4.2) we obtain 
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csincpcoscp -Ft sin29 : cos2(p 
a2 + m [ al+m a2+m 1 (4.3) 

The expression in square brackets is no less than 3L, where 

h=hnL,L ( a,+m a2+m > 

Consequently, the integral of the last term on the right-hand side of relation (4.3) tends to -00 at least 
no slower than ?&/2. 

By our assumption, the function 5 and fi are bounded. Consequently, the sum of the remaining 
terms in the expression for Jo, not containing Cp, is bounded. Hence, the integral of these terms in 
the interval [0, t] increases no faster than a linear function of t, i.e. it is bounded by a certain 
function pt. 

Further, we will estimate the integral from the sum of the terms containing $I 

(4.4) 

Since 5 and n are bounded (the point m is always inside the body) together with their derivatives 5 
andrj (the kinetic energy of relative motion is bounded), the sum (4.4) does not exceed v1 + v2t, where 
v1 and v2 are certain constants. 

Thus 

y(t)Iv,+(v,+p)t-hFt2/2 

It remains to note that the right-hand side of this inequality approaches - as t + 00. 

5. THE MOTION OF A BODY GENERATED BY A RANDOM WALK OF 
AN INTERNAL POINT 

The question of the nature of the motion of a body when there are no external forces and when the 
internal point is displaced along a trajectory of “general form” is still an open one. Primarily, the case 
of the motion of a point with limited velocity is of interest. To investigate the problem in a first 
approximation we will use a probability approach, when we consider a random trajectory as the 
trajectory of general form. As an illustration we will present the results of numerical calculations of 
the trajectories of motion of a body which is generated by random displacements of the point inside 
the body. 

We will confine ourselves to the following formulation. Suppose the point m performs a random walk 
(see, for example, [7]) along the nodes of a square grid, oriented along the axes of a moving system of 
coordinates. We will assume that during one step the point is displaced from the current node to one 
of the neighbouring nodes, and during even steps the motion occurs along one of the coordinates axes, 
while in odd steps motion occurs along the other axis (with a probability of 0.5 in the positive or negative 
directions). The law of motion is assumed to be the same for all steps. In order to ensure that the point 
remains inside the body, we use a scheme with reflection when carrying out the calculations. We will 
confine the region of possible motion of the point m to a square with centre at the point 0. After the 
point is incident on the side of the square its displacement outside the limits of the square is forbidden: 
in a step when the direction of motion of the point is perpendicular to the boundary, the point is displaced 
inside the square with probability 1. 

In the calculations, the size of the square was assumed to be equal to 20 linear units (steps). As was 
shown above, the configuration of the trajectory of the body depends on the configuration of the 
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trajectory of the point and does not depend on the “velocity regime” of motion of the point. For 
convenience in carrying out the procedure of numerical integration of this system, we chose the following 
form of motion of the point m: the point is at rest at nodes (this indicates that the whole body plus 
fluid plus point system is in a state of rest); the motion of the point from the initial node to the middle 
of the section, along which it moves, is a uniformly accelerated motion and then a uniformly decelerated 
motion. 

This problem is described by the same relations (2.11) and (2.4) with the sole difference that in the 
numerical integration of them the values of the functions c(t), n(t), t(t) andfi(t), which specify the relative 
motion of the point m, are calculated taking into account the random choice of the direction of motion. 
In the corresponding computer program we used a random number generator for these purposes. 

In Fig. 6 we show two examples of the trajectories of motion of the body for the following values of 
the parameters: al = 1, a2 = 7, b = 10, and m = 1. In Fig. 7 we show corresponding graphs of the 
change with time of the distance from the centre of the body to the initial position. 

In each calculation the point m made from 3 x lo6 to 6 x lo6 steps. The small number of calculations 
carried out - rather time consuming in fact - is too small a statistical sample to form a basis for any 
fundamental conclusions of a statistical nature. Nevertheless, we note the following qualitative results: 
first, when the duration of an “observation” (number of steps) is increased, it is found that there is an 
increase in the maximum distance that the body is displaced and, second, in the majority of cases the 
trajectory returned to the region of the origin of coordinates. Note that this behaviour corresponds to 
the properties of the classical random walk in a plane [7], the trajectories of which, as is well known, 
return to the initial point with probability 1. 
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Fig. 7 
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